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Abstract
The quantum entanglement of the ground state and the thermal entanglement of
the mixed thermal state of a three-qubit system with the Heisenberg interaction
are investigated in detail in the presence of an inhomogeneous magnetic field.
The concurrence of the model is compared with the magnetization, and the
threshold temperature of the entanglement is discussed. The effects of the
magnetic field and the coupling coefficient in the thermal entanglement are
also examined by considering the concurrence of the three-qubit and two-
qubit systems. We found that the thermal entanglement of the system exists
at temperatures below the threshold temperature even if the ground state is
unentangled.

PACS numbers: 03.67.Mn, 03.65.Ud, 75.10.Jm

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Thermal entanglement plays a crucial role in quantum mechanics and quantum information
theory. Recently, the investigation of the thermal entanglement has emerged in spin systems
in the advance of the quantum information. One of the important aims for quantum computing
and quantum communication is to find an entangled resource in solid systems at a finite
temperature. The Heisenberg spin model is a basic and most extensively used solid state
system. It is known that the Heisenberg interaction can be realized also in quantum dots,
nuclear spins, cavity QED [1–4]. A theoretical scheme for multipartite entanglement and
quantum information processing with trapped ions is proposed by using a single-resonant
interaction [5]. The Deutsch–Jozsa algorithm with high fidelity is investigated based on two-
atom interaction in a thermal cavity [6]. The Heisenberg Hamiltonian has been used for
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quantum computation and quantum teleportation processes [7, 8]. The thermal entanglement
of the Heisenberg spin model with anisotropic XY interaction was investigated both in
the absence of the magnetic field [9] and in the presence of the uniform magnetic field
[10, 11]. The entanglement based on the Heisenberg XYZ model was also investigated
subject to the uniform applied field [12]. In inhomogeneous magnetic fields, the thermal
entanglement of the two-qubit system was studied within Heisenberg XXX interaction [13],
XXZ interaction [14] and XYZ interaction [15]. Most recently, it has been pointed out
that the two-qubit system can be entangled in two distinct temperature regions [16]. The
generic behaviour of the thermal entanglement as a function of temperature is investigated
in [17]. By quantum Monte Carlo simulations, the thermal entanglement of the reduced
state of the two nearby qubits in qubit spin chains was discussed [18]. The divergence of
the entanglement in the Heisenberg spin model is studied in [19] by pairwise entanglement
with the uniform reduced magnetic field. The experimental determination of the quantum
entanglement with a single measurement has been given based on the two copies of the quantum
state [20].

In this work, the quantum entanglement of a three-qubit system with the Heisenberg
interaction is investigated exactly in the presence of inhomogeneous magnetic fields, and the
thermal entanglement of the system is studied at finite temperatures. The threshold temperature
of the entanglement is extracted, and we also examine the features of the entanglement and the
magnetization of the system. Finally, the difference of the entanglement between the three-
qubit and two-qubit systems is discussed. It is shown that the magnetic field, together with
the coupling strength of the Heisenberg interaction, can control effectively the entanglement
of the system. In a three-qubit system, we found that the thermal entanglement exists at finite
temperatures below the threshold temperature even though the ground state is unentangled.
This paper is set out as follows. In section 2, starting with the calculation of the eigenstates
for a three-qubit system, we get the quantum entanglement of the ground states for the
Hamiltonian with the Heisenberg interaction subject to an inhomogeneous magnetic field.
The symmetry is discussed for the concurrence of the eigenstates and the critical field is
given. The ground state of the system varies between the entangled and unentangled states
when the nonuniform applied field changes. In section 3, we give the thermal entanglement
of the system at finite temperature and compare the concurrence with the magnetization of
the system. The threshold temperature is given as a function of the magnetic field and the
coupling coefficient. We also discuss the differences in pairwise concurrences for the three-
qubit and two-qubit systems. We summarize our results and give the conclusion in the final
section.

2. Quantum entanglement in the ground states

A three-qubit system with the Heisenberg interaction is described, in an inhomogeneous
magnetic field, by

H =
3∑

n=1

(
Jσx

n σ x
n+1 + Jσy

n σ
y

n+1 + Jσ z
nσ z

n+1 + Bnσ
z
n

)
, (1)

where B1 = B +b, B2 = B −b, B3 = B, (b �= 0). Here J is the interaction strength and Pauli
matrix σn satisfies the periodic boundary condition σn+3 = σn. B and b describe the magnetic
fields along the z direction so that b measures the degree of the inhomogeneity of the applied
field at the sites of the first and second spins for a given uniform field B [13, 15].

The qubit spin system may be treated as being in the ground state under an extremely
lower temperature. For finding out the eigenstates of the three-qubit system (1), we work in
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the standard basis for three spins, |000〉, |001〉, |010〉, |100〉, |011〉, |101〉, |110〉 and |111〉. By
straightforward diagonalization of the Hamiltonian, the energy eigenstates of equation (1) can
be written as follows:

|ψ0〉 = |000〉,
|ψj 〉 = Aj |001〉 + Bj |010〉 + Cj |100〉, (j = 1, 2, 3)

|ψk〉 = Ak|011〉 + Bk|101〉 + Ck|110〉, (k = 4, 5, 6)

|ψ7〉 = |111〉,

(2)

where

Aj = 1

2
√

�j

[8J 2 − (ρj − B + J + 2b)(ρj − 2b − J − B)],

Bj = 1

2
√

�j

[(ρj − J − B)(ρj + J − B + 2b) − 8J 2],

Cj = 2Jb√
�j

,

�j = b
[
2ρj (b(2b − B) − 3J (b − 2B)) + 3J 2(18J + 7b)

+ ρ2
j (b − 6J ) + 6J (b + B)(2b − B) + b(2b − B)2

]
,

(3)

and

Ak = 2bJ√
�k

,

Bk = 1

2
√

�k

[8J 2 − (ρk + B − J )(ρk + B − 2b + J )],

Ck = 1

2
√

�k

[(ρk + B − 2b + J )(ρk + B + 2b − J ) − 8J 2],

�k = b
[
2ρk(B(6J + b) − b(3J + 2b)) + 3J 2(7b − 18J )

+ ρ2
k (b + 6J ) + 6J (B + b)(B − 2b) + b(2b − B)2

]
,

(4)

with the corresponding eigenenergies, respectively, by

E0 = 3J + 3B,

Ei = ρi, (i = 1, 2, 3, 4, 5, 6)

E7 = 3J − 3B,

(5)

where

ρ1 = −4

3

√
9J 2 + 3b2 cos


π

3
− 1

3
arccos

8J 3√(
4J 2 + 4

3b2
)3


 − J + B, (6)

ρ2 = 4

3

√
9J 2 + 3b2 cos


1

3
arccos

8J 3√(
4J 2 + 4

3b2
)3


 − J + B, (7)

ρ3 = −4

3

√
9J 2 + 3b2 sin


π

6
− 1

3
arccos

8J 3√(
4J 2 + 4

3b2
)3


 − J + B, (8)
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ρ4 = −4

3

√
9J 2 + 3b2 cos


π

3
− 1

3
arccos

8J 3√(
4J 2 + 4

3b2
)3


 − J − B, (9)

ρ5 = 4

3

√
9J 2 + 3b2 cos


1

3
arccos

8J 3√(
4J 2 + 4

3b2
)3


 − J − B, (10)

ρ6 = −4

3

√
9J 2 + 3b2 sin


π

6
− 1

3
arccos

8J 3√(
4J 2 + 4

3b2
)3


 − J − B. (11)

For convenience we shall work in units such that B, b and J are dimensionless throughout this
paper.

The quantum entanglement of the eigenstates can be specified by the value of the
concurrence [21], in which R matrix is introduced as follows:

R = ρ12(σy ⊗ σy)ρ
∗
12(σy ⊗ σy). (12)

Here ρ12 is the reduced density matrix and the star indicates its complex conjugate. The
concurrence C is defined by

C = max{λ1 − λ2 − λ3 − λ4, 0}, (13)

where λ1, λ2, λ3, λ4 are the positive square roots of the eigenvalues of the matrix R
in the descending order. Then, the concurrences of the above energy eigenstates are,
respectively,

C(|ψj 〉) = 2|BjCj |, C(|ψk〉) = 2|AkBk|, (14)

where j = 1, 2, 3 and k = 4, 5, 6. The other two eigenstates, |ψ0〉 and |ψ7〉, are unentangled.
By considering relations (6)–(11), we note that the coefficients Ai, Bi, Ci (i = 1, 2, 3, 4, 5, 6)

satisfy the relations

A2
j = C2

j+3, B2
j = A2

j+3, C2
j = B2

j+3,

for j = 1, 2, 3. Hence the quantum entanglement of the eigenstates has the symmetrical
property

C(|ψj 〉) = C(|ψj+3〉), (15)

for j = 1, 2, 3. By setting

a1 = 1 + 4ξ cos

(
π

3
− 1

3
arccos

1

ξ 3

)
,

a2 = 1 − 4ξ cos

(
1

3
arccos

1

ξ 3

)
,

a3 = 1 + 4ξ cos

(
π

3
+

1

3
arccos

1

ξ 3

)
,

ξ =
√

1 + δ2/3, δ = b

J
,

(16)
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(a) (b)

Figure 1. The ground states of the three-qubit system, as a function of the inhomogeneity ξ and
the magnetic field B: (a) the ferromagnetic case; (b) the antiferromagnetic case.

the eigenenergy of the Hamiltonian can be written down as

E0 = 3J + 3B,

E1 = −Ja1 + B for J > 0,

E1 = −Ja2 + B for J < 0,

E2 = −Ja1 + B for J < 0,

E2 = −Ja2 + B for J > 0,

E3 = −Ja3 + B,

E4 = −Ja1 − B for J > 0,

E4 = −Ja2 − B for J < 0,

E5 = −Ja1 − B for J < 0,

E5 = −Ja2 − B for J > 0,

E6 = −Ja3 − B,

E7 = 3J − 3B.

(17)

The parameter b, then, δ and ξ denote the inhomogeneity of the applied field. Then
we can call them as the zero-field splitting parameters. We are now interested in the
quantum entanglement of the ground state of the qubits system. The ground states are
indicated in figure 1 as a function of the inhomogeneity parameter δ and magnetic field B
for the ferromagnetic (J < 0) and antiferromagnetic (J > 0) cases, respectively. For the
ferromagnetic (J < 0), the ground state is |ψ4〉 if 0 < B < 2J

(
1 − ξ cos

(
1
3 arccos 1

ξ 3

))
, and

|ψ7〉 if B > 2J
(
1 − ξ cos

(
1
3 arccos 1

ξ 3

))
, respectively, with the critical magnetic field Bc =

2J
(
1−ξ cos

(
1
3 arccos 1

ξ 3

))
. The ground state is |ψ1〉 if 0 > B > −2J

(
1−ξ cos

(
1
3 arccos 1

ξ 3

))
,

and |ψ0〉 if B < −2J
(
1 − ξ cos

(
1
3 arccos 1

ξ 3

))
with the critical magnetic field Bc =

−2J
(
1 − ξ cos

(
1
3 arccos 1

ξ 3

))
, respectively (see figure 1(a)). For the antiferromagnetic case

(J > 0), the ground state keeps in the state|ψ4〉 if 0 < B < 2J
(
1 + ξ cos

(
1
3π − 1

3 arccos 1
ξ 3

))
,

and |ψ7〉 if B > 2J
(
1 + ξ cos

(
1
3π − 1

3 arccos 1
ξ 3

))
, respectively, with the critical magnetic

field Bc = 2J
(
1 + ξ cos

(
1
3π − 1

3 arccos 1
ξ 3

))
. And the ground state is |ψ1〉 if 0 > B >

−2J
(
1 + ξ cos

(
1
3π − 1

3 arccos 1
ξ 3

))
and |ψ0〉 if B < −2J

(
1 + ξ cos

(
1
3π − 1

3 arccos 1
ξ 3

))
with
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the critical magnetic field is Bc = −2J
(
1 + ξ cos

(
1
3π − 1

3 arccos 1
ξ 3

))
, respectively (see

figure 1(b)).
By introducing the parameters

ηj = δ
(
δa2

j − 6a2
j − 4δ2aj + 6δaj + 54 + 21δ + 12δ2 + 4δ3

)
,

with j = 1, 2, 3, and

ξk = δ
(
δa2

k + 6a2
k + 6δak + 4δ2ak + 21δ − 54 − 12δ2 + 4δ3

)
,

with k = 1, 2, the coefficients in the eigenstate |ψ1〉 = A1|001〉 + B1|010〉 + C1|100〉 can be
written as

A1 = 1

2
√

η1

(
4δ2 − a2

1 + 4δ + 9
)
,

B1 = 1

2
√

η1

(
a2

1 − 2δa1 − 2δ − 9
)
,

C1 = 2δ√
η1

,

(18)

for J > 0, and

A1 = 1

2
√

η2

(
4δ2 − a2

2 + 4δ + 9
)
,

B1 = 1

2
√

η2

(
a2

2 − 2δa2 − 2δ − 9
)
,

C1 = 2δ√
η2

,

(19)

for J < 0. For the eigenstate |ψ4〉 = A4|011〉 + B4|101〉 + C4|110〉, we have that

A4 = 2δ√
ξ1

,

B4 = − 1

2
√

ξ1

(
a2

1 + 2δa1 + 2δ − 9
)
,

C4 = 1

2
√

ξ1

(
a2

1 − 4δ2 + 4δ − 9
)
,

(20)

for J > 0, and

A4 = 2δ√
ξ2

,

B4 = − 1

2
√

ξ2

(
a2

2 + 2δa2 + 2δ − 9
)
,

C4 = 1

2
√

ξ2

(
a2

2 − 4δ2 + 4δ − 9
)
,

(21)

for J < 0, respectively. For the energy eigenstates, the quantum entanglement is obtained,
respectively, by

C(ψ0) = C(ψ7) = 0,

C(ψ4) = C(ψ1) = 2

∣∣∣∣ δ

η2

(
a2

2 − 2δa2 − 2δ − 9
)∣∣∣∣ ,

C(ψ5) = C(ψ2) = 2

∣∣∣∣ δ

η1

(
a2

1 − 2δa1 − 2δ − 9
)∣∣∣∣ ,

C(ψ6) = C(ψ3) = 2

∣∣∣∣ δ

η3

(
a2

3 − 2δa3 − 9 − 2δ
)∣∣∣∣ .

(22)
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(a) (b)

Figure 2. Concurrences of the states versus the zero-field splitting parameter δ for various magnetic
fields B: (a) J = −1 and B = 0, 1, 3, 5 from the front to back; (b) J = 1 and B = 0, 5, 7.4, 10
from the front to back.

The quantum entanglement of the ground state is shown in figure 2 for the variation of the
concurrence with the zero-field splitting parameter δ for various background applied B fields
for the ferromagnetic (J = −1) and antiferromagnetic (J = 1) cases. The ground state is
degenerated as E1 = E4 when B = 0. And the concurrence decreases as the inhomogeneity
of the applied field increases both for the ferromagnetic and antiferromagnetic cases.
Figure 2(a) shows that the ground state is unentangled for B = 1 when δ < |2.31|, B = 3
when δ < |4.65| and B = 5 when δ < |6.76|, respectively. Otherwise, the ground state is the
entangled state |ψ4〉. Figure 2(b) shows that the ground state is the entangled state |ψ4〉 for
B = 5 when δ > |2.58|, B = 7.4 when δ > |5.15| and B = 10 when δ > |7.83|. Otherwise,
the ground state is the unentangled state |ψ7〉.

3. Thermal entanglement and magnetization

The density operator at the thermal equilibrium is given by ρ(T ) = e−βH /Z with the partition
function Z = Tr e−βH and β = 1

kT
, where k is Boltzmann’s constant. At finite temperature,

the state of the system may be treated as the mixture of the eigenstates of the energy Ej

with the probability e−βEj /Z. The pairwise entanglement of this thermal state can be studied
with the reduced density operator similarly as the case of the ground state. By using the
scheme denoted by equations (12) and (13), we get that the thermal concurrence of the
three-qubit system is of the following form:

C = 2

Z
max{√v1v2 − √

u1u2, 0} for |w| >
√

v1v2,

C = 2

Z
max{|w| − √

u1u2, 0} for |w| � √
v1v2,

(23)

with Z = u1 + u2 + v1 + v2, and

u1 = e−βE0 +
3∑

j=1

e−βEj A2
j ,

u2 = e−βE7 +
3∑

j=1

e−βEj+3A2
j ,
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(a) (b)

Figure 3. 3D plots of the thermal concurrence versus temperature T and the magnetic field B with
δ = 1.4 for the ferromagnetic and antiferromagnetic situations, respectively.

v1 =
3∑

j=1

(e−βEj + e−βEj+3)B2
j ,

v2 =
3∑

j=1

(e−βEj + e−βEj+3)C2
j ,

w =
3∑

j=1

(e−βEj + e−βEj+3)BjCj ,

(24)

where the property BjCj = Aj+3Bj+3 for j = 1, 2, 3 has been used. Furthermore, it can be
proved with easy that |w| � √

v1v2. Then the thermal concurrence of the system is written by

C = 2

Z
max{|w| − √

u1u2, 0}. (25)

The temperature T and magnetic field B dependences of the thermal concurrence C are
presented in figure 3 for J = ∓1, respectively. It is shown that the thermal entanglement
in the ferromagnetic case is more sensitive to the temperature than that in antiferromagnetic
case. The higher concurrence occurs at extremely low temperatures for the ferromagnetic
situation. In figure 4, we show the thermal entanglement of the model as a function of the
zero-field splitting parameter δ of the magnetic field and the temperature T. Obviously the
thermal concurrence is controlled by the applied field at finite temperature, and the stronger
entanglement can be obtained by varying the zero-splitting magnetic field parameter. The
threshold temperature of the model versus the magnetic field is diagrammatized in figure 5
for the different B field, the splitting parameter δ and the coupling strength J . We note that
the threshold temperature is not sensitive to the inhomogeneity of the applied field for the
ferromagnetic case.

We know that the probability distribution P of the eigenstates in the thermal state χ is
Pi = T r{|φi〉〈φi |ρ} = e−βEi

Z
with i = 0, 1, 2, 3, . . . , 7. The magnetization Mz per spin of the

system in the z direction is Mz

(= 2〈Sz〉
N

) = 2
N

∑7
i=0〈Sz〉iPi . It gives that

Mz = 1

3

3e−βE0 + e−βE1 + e−βE2 + e−βE3 − e−βE4 − e−βE5 − e−βE6 − 3e−βE7

e−βE0 + e−βE1 + e−βE2 + e−βE3 + e−βE4 + e−βE5 + e−βE6 + e−βE7
.
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(a) (b)

Figure 4. 3D plots of the thermal concurrence versus temperature T and the zero-field splitting
parameter δ with B = 0 for the ferromagnetic (J = −1) and antiferromagnetic (J = 1) situations,
respectively.

(a) (b)

(c) (d)

Figure 5. The variations of the threshold temperature with the magnetic field B and the
inhomogeneity of the field in the ferromagnetic and antiferromagnetic cases: (a) J = 1 and
δ = 0.1 (dotted), 1.3 (dashed), 2.0 (solid); (b) J = −1 and δ = 1.5 (dotted), 2.4 (dashed), 3.3
(solid), respectively; (c) J = 1 and B = 0 (dotted), 2.1 (dashed), 4.0 (solid), respectively; (d)

B = 0 and J = −0.6 (dotted), 0.6 (dashed), 1.0 (solid), respectively.
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(a) (b)

(c) (d )

Figure 6. The thermal concurrence (solid) and the magnetization (dashed) as a function of the
inhomogeneity parameter δ and the magnetic field B for the ferromagnetic case: (a) J = −1,

B = −0.4, δ = 1.4; (b) B = −1, kT = 1, b = 4; (c) J = −1, kT = 1, B = −1.5; (d) J = −1,

kT = 1, δ = 3.

Figure 6 shows the variations of the magnetization and the thermal concurrence as functions
of the temperature, coupling strength, zero-field splitting parameter and magnetic field,
respectively, for the ferromagnetic case. It shows that the thermal entanglement has the
completely different property with the magnetization for the ferromagnetic case. The
antiferromagnetic case is presented in figure 7. The thermal concurrence decreases when
the temperature increases for both of the ferromagnetic and antiferromagnetic cases, although
the magnetization is non-monotonous via the temperature for the ferromagnetic case (see
figures 6(a) and 7(a)). Figures 6(b) and 7(b) show that the thermal concurrence is lower when
the strength of the coupling is near zero, but the magnetization of the system can be finite. We
find that the zero-field splitting parameter can adjust the thermal entanglement more effectively
than the applied field B (see figures 6(c), (d) and 7(c), (d)), although the magnetization of
the system is insensitive related to this splitting parameter for the antiferromagnetic case as
shown in figure 7(c). It is very interesting to observe that the entanglement can describe
the quantum correlation of the spin chain, which is independent of the magnetization of the
spin system. In figure 8, we show the difference of the thermal entanglements between the
three-qubit and two-qubit systems. Very recently, it has been proposed that the two-qubit
system can be entangled in distinct temperature regions [16]. Here, in the three-qubit system
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(a) (b)

(c) (d)

Figure 7. Comparison of the thermal concurrence (solid) and the magnetization (dashed) in the
antiferromagnetic case: (a) J = 1, B = −0.4, δ = 1.4; (b) B = −5, kT = 1, b = 3; (c) J = 1,

kT = 1, B = −1.5; (d) J = 1, kT = 1, δ = 3.

with the nonuniform applied field, the effect of the temperature is also very sensitive for the
entanglement at extremely low temperature. In figure 9, we present the thermal concurrence
with the entangled and unentangled ground states. When J = −1, ξ = 1.5 and B = −0.8, the
ground state of the system is the unentangled state |ψ0〉. But the thermal entanglement of the
system is nonzero when temperatures are lower than the threshold one kTth = 1.2, as is shown
in the solid in figure 9(a). As the magnetic field B = −0.7, the ground state of the system
becomes as the entangled state |ψ1〉, the thermal concurrence decreases monotonously when
temperatures increase, as shown in the dotted line in figure 9(a). For the antiferromagnetic
case (J = 1), as ξ = 1.5 and B = 4.5, the ground state of the system is the unentangled state
|ψ7〉. But the thermal state of the system is entangled as temperatures are below the threshold
one kTth = 3.2, as shown in the solid in figure 9(b). As the applied field B = 4.4, the ground
state is the entangled |ψ4〉. In this case, the thermal concurrence decreases monotonously
when temperatures increase, as shown in the dotted line in figure 9(b). That is, figures 9(a)
and (b) provide us a fact that (i) the ground state is entangled and its thermal state is also
entangled when the temperature is lower than the threshold temperature; (ii) the ground state
is unentangled, but the corresponding thermal state is entangled as temperatures are below the
threshold temperature. It shows the very interesting features of the entanglement of the qubits
system.
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(a) (b)

(c) (d)

Figure 8. Comparison of the concurrences between the three-qubit (solid) and two-qubit (dashed)
systems: (a) J = 1, B = 0.4, δ = 1.4; (b) B = 0.4, kT = 1, b = 1.4; (c) J = 1,

kT = 1, B = 0.4; (d) J = 1, kT = 1, δ = 1.5.

(a) (b)

Figure 9. The thermal entanglement of the three-qubit system with the entangled and the untangled
ground states, respectively, with ξ = 1.5: (a) J = −1, B = −0.8 (solid), and B = −0.7 (dotted);
(b) J = 1, B = 4.5 (solid), and B = 4.4 (dotted).
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4. Conclusion

We have studied the quantum entanglement of the energy eigenstates and the thermal
entanglement of a three-qubit system by considering the pairwise concurrence in the presence
of an inhomogeneous magnetic field. The threshold temperature of the thermal entanglement
is discussed, and the comparison of the concurrence between the three-qubit and two-qubit
systems is given. Our results show that the pairwise entanglement is dependent on the
number of the qubits, and the coupling of the other qubit to the pair can increase the pairwise
entanglement. This means a kind of the quantum correlation exists in a Heisenberg spin model.

The ground state of the system is either entangled or unentangled depending on the
applied magnetic field and the coupling strength between the qubits. The critical magnetic
fields exist and the ground state of the three-qubit system is divided into the four cases:
the two entangled states and the two unentangled states for both the ferromagnetic and
antiferromagnetic situations. We observe that the thermal entanglement of the system exists
even if the ground state is separable, when the temperature is below threshold one. This means
that the entanglement of the system can be increased as the temperature increases, although
the entanglement is often a low-temperature phenomenon. It would be very interesting and
possible to extent our investigation to large objects, especially various physical systems, such
as a semiconductor, a superconductor and a Kondo model, etc. Recently, a method in which the
entanglement of any pure quantum state can be experimentally determined is proposed based
on a simple projective measurement when the state is available in a two-fold copy [20, 22].
Nearly all protocols requiring shared quantum information rely on the quantum entanglement.
It is known that creating entanglement of many qubits is still a great challenge theoretically
and experimentally. The cluster states, one kind of multipartite entangled states, can be created
by an Ising-type interaction [5, 23], and the quantum computer can be realized based on these
cluster states. We hope the above discussions would be helpful for the procedure to create the
multipartite entanglement in quantum systems.
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